
 

SI Text 

 

1. Observational Data 

 

Observational data for Wo, the column-integrated atmospheric moisture content over 

oceans, were provided by Remote Sensing Systems (RSS) (Santa Rosa, CA) (1, 2). All 

analyses reported on here rely on version 6 of the SSM/I-derived Wo data set produced by 

RSS. Data were available as monthly means on a 2.5° × 2.5° latitude/longitude grid and 

span the period July 1987 through December 2006. 

 

We used version 2 of the NOAA Extended Reconstructed Sea Surface Temperature data 

set (ERSST) (3) for the SST variability calculations shown in Fig. 3C. ERSST data were 

available from January 1854 to December 2005 in the form of monthly means on a 

regular 2° × 2° latitude/longitude grid. Reconstruction of high-frequency SST anomalies 

involved use of empirically derived spatial modes of variability to interpolate 

observations in times of sparse coverage. Further details of the ERSST data set are 

available online (4). 

 

2. Modeling Groups Contributing to IPCC Database 

 

At the time this research was conducted, 15 modeling groups had performed a wide range 

of simulations in support of the Fourth Assessment Report of the Intergovernmental 

Panel on Climate Change (IPCC AR4). Climate data from these simulations were made 

available to the scientific community through the U.S. Department of Energy’s Program 

for Climate Model Diagnosis and Intercomparison (PCMDI). Five modeling groups 

provided W results for at least two different model configurations. Results from a total of 

22 different climate models were analyzed. 

 

We considered two sets of simulations here: preindustrial control runs and 20CEN 

experiments with historical changes in a number of different anthropogenic and natural 



forcings. In IPCC terminology, these integrations are referred to as “picntrl” and 

“20c3m,” respectively. 

 

Official designations of the 15 modeling groups that supplied W data are listed below 

(with model acronyms in brackets): 

 

1. Bjerknes Center for Climate Research, Norway [BCCR-BCM2.0]. 

 

2. Canadian Centre for Climate Modeling and Analysis, Canada [CCCma-

CGCM3.1(T47) and CCCma-CGCM3.1(T63)]. 

 

3. National Center for Atmospheric Research, U.S.A. [CCSM3 and PCM]. 

 

4. Météo-France/Centre National de Recherches Météorologiques, France [CNRM-

CM3]. 

 

5. Commonwealth Scientific and Industrial Research Organization (CSIRO) Atmospheric 

Research, Australia [CSIRO-Mk3.0]. 

 

6. Max-Planck Institute for Meteorology, Germany [ECHAM5/MPI-OM]. 

 

7. Meteorological Institute of the University of Bonn, Meteorological Research Institute 

of the Korean Meteorological Agency, and Model and Data group, Germany/Korea 

[MIUB/ECHO-G]. 

 

8. Institute for Atmospheric Physics, China [FGOALS-g1.0]. 

 

9. Geophysical Fluid Dynamics Laboratory, U.S.A. [GFDL-CM2.0 and GFDL-CM2.1]. 

 

10. Goddard Institute for Space Studies, U.S.A. [GISS-AOM, GISS-EH, and GISS-ER]. 

 



11. Institute for Numerical Mathematics, Russia [INM-CM3.0]. 

 

12. Institute Pierre Simon Laplace, France [IPSL-CM4]. 

 

13. Center for Climate System Research, National Institute for Environmental Studies, 

and Frontier Research Center for Global Change, Japan [MIROC-CGCM3.2(medres) and 

MIROC-CGCM3.2(hires)]. 

 

14. Meteorological Research Institute, Japan [MRI-CGCM2.3.2]. 

 

15. United Kingdom Meteorological Office, Hadley Centre for Climate Prediction and 

Research, U.K. [UKMO-HadCM3 and UKMO-HadGEM1]. 

 

3. Forcings Used in 20CEN Runs 

 

Details of the natural and anthropogenic forcings used by different modeling groups in 

their IPCC 20CEN simulations are given in SI Table 2. This table was compiled using 

information that participating modeling centers provided to PCMDI (5). All model 

acronyms used in the table are defined in the previous section. 

 

A total of 11 different forcings are listed in SI Table 2. A letter “Y” denotes inclusion of 

a specific forcing. As used here, “inclusion” signifies the specification of time-varying 

forcings, with changes on interannual and longer time scales. Forcings that were varied 

over the seasonal cycle only, or not at all, are identified with a dash. A question mark 

indicates a case where there is uncertainty regarding inclusion of the forcing. 

 

Results in SI Table 2 are stratified by inclusion or omission of volcanic forcing (ALL and 

ANTHRO, respectively). Ten of the 12 ALL models explicitly incorporated volcanic 

aerosols. Two models, MRI-CGCM2.3.2 and MIUB/ECHO-G, represented volcanic 

effects in a more indirect manner, using estimated volcanic forcing data from refs. 6 and 

7, respectively, to adjust the solar irradiance at the top of the model atmosphere. As noted 



in the main text, the ALL vs. ANTHRO partitioning also separates models with “total” 

external forcing (natural plus anthropogenic) from models with primarily anthropogenic 

forcing. 

 

Although all 15 modeling groups used very similar changes in well mixed GHGs, the 

changes in other forcings were not prescribed as part of the experimental design. In 

practice, each group used different combinations of 20th century forcings and often used 

different data sets for specifying individual forcings. End dates for the 20c3m experiment 

varied among groups and ranged from 1999 to 2003. 

 

4. Fingerprint Analysis 

 

4.1 Regridding and Masking of Data. Model results were available on different grids 

(SI Table 3). To calculate fingerprints from the averages of the ALL and ANTHRO 

model 20CEN runs, and to obtain “pooled” noise estimates from the ALL and ANTHRO 

model control integrations, we regridded 20CEN and control run W data from all 22 

models to a common 10° × 10° latitude/longitude grid. Regridding to a relatively coarse-

resolution grid reduces the spatial dimensionality of the input data sets, which is of 

benefit in the estimation of EOFs used in the fingerprint analysis. Because changes in W 

tend to be smoothly varying (Fig. 4 A–D), regridding does not lead to appreciable loss of 

information on the spatial structure of the leading signal or noise modes. 

 

Each model has a “mask,” )j(M
ρ

, of the ocean fraction on the original model grid. The 

arrow denotes a vector in p-dimensional space, where p is the total number of model 

gridpoints, and j is the index over the number of ALL or ANTHRO models. Because 

observed W data were available over ocean only, each model’s land W values had to be 

appropriately masked out in the regridding process, i.e., any land gridpoints within a 

given 10° × 10° “target” grid cell were excluded from the calculation of the ocean W 

value for the target grid cell. 

 



For each model, we calculated the ocean fraction at every target grid cell. Global-mean 

values of these fractions are generally different across models, reflecting differences in 

the original land/sea masks. Observed Wo data and their associated ocean fraction were 

also transformed to the same 10° × 10° target grid. 

 

4.2 Definition of Fingerprint. Let )ji,t,(S
ρ

represent annual-mean Wo data at time t from 

the ith realization of the jth model’s 20CEN experiment. Data are expressed as anomalies 

relative to the smoothed initial state (1900–1909) of the experiment. Here, the total time 

in years is Nt = 100 (because all 20CEN experiments cover the common period 1900–

1999), and the total number of model gridpoints is P = 291 (after regridding to the 

common 10° × 10° latitude/longitude grid and masking out land points). The ALL and 

ANTHRO averages, )t(S
ALL

ρ
 and )t(S

ANTHRO

ρ
, were calculated by first averaging over an 

individual model’s 20CEN realizations (where multiple realizations were available; see 

SI Table 3) and then averaging over models. Because the individual model land/sea 

masks are not identical after regridding, the number of models contributing to the 

multimodel averages varies near coastlines and in the vicinity of islands. 

 

Finally, we calculated EOFs of the )t(S
ALL

ρ
 and )t(S

ANTHRO

ρ
 data sets. The fingerprints 

ALL
F
ρ

and 
ANTHRO

F
ρ

 are simply the first EOFs of each data set, which explain a substantial 

fraction of the overall variance (89% and 76%, respectively, in the )t(S
ALL

ρ
 and 

)t(S
ANTHRO

ρ
 moisture data; see Fig. 4 A and B) and primarily capture the large increase in 

Wo over the 20th century (not shown). 

 

In calculating EOFs of )t(S
ALL

ρ
 and )t(S

ANTHRO

ρ
, we had to account for intermodel 

differences in )j(M
ρ

, the regridded ocean fraction. We did this in the following way. 

First, the regridded )j(M
ρ

 values were set to zero at any grid cell with <1% ocean 

coverage. We then computed 
ALL

M
ρ

and
ANTHRO

M
ρ

, the geometrical means of the ocean 

fraction for the ALL and ANTHRO models. Use of the geometrical mean excludes areas 



in which any model has zero ocean fraction. Next, we calculated the combined 

geometrical mean ocean fraction,
COMB

M
ρ

, which is the geometrical mean of 
ALL

M
ρ

, 

ANTHRO
M
ρ

, and the observed ocean fraction, 
OBS

M
ρ

. Use of 
COMB

M
ρ

ensures that all EOF 

calculations (and all calculations in the subsequent determination of detection time) are 

performed on a common grid, with a common land/sea mask. Appropriate weights are 

carried throughout the EOF analysis. For each grid cell, the weight is the product of the 

combined geometrical mean ocean fraction and the grid cell’s area weight. 

 

4.3 Calculation of Concatenated Noise Data Sets. As noted in the main text, optimal 

fingerprint techniques typically require two different data sets for estimating the 

background noise of natural internal variability. One data set is required for optimizing 

the fingerprint, and the second is used for estimating the statistical significance of results. 

Here, we generated two noise data sets by concatenating W data from individual control 

runs. We did this separately for the ALL and ANTHRO control runs. 

 

For example, for the 12 ALL model control runs, we regridded annual-mean W data to 

the same target 10° × 10° grid used for fingerprint estimation, formed anomalies for each 

control run (relative to its overall time mean), and then concatenated these anomalies to 

form the noise data set )(t
ALL

C
ρ

. The index t denotes the single concatenated time 

dimension. There are a total of 4,440 years of ALL model control run data. The 10 

ANTHRO control runs were processed in a similar manner to form )(t
ANTHRO

C
ρ

, with a 

total time dimension of 4,418 years. In calculating EOFs of )(t
ALL

C
ρ

 and )(t
ANTHRO

C
ρ

, we 

used the geometrical mean ocean fraction masks (
ALL

M
ρ

and
ANTHRO

M
ρ

) that were described 

in the previous section. The first EOFs of )(t
ALL

C
ρ

 and )(t
ANTHRO

C
ρ

 explain 28% and 44% 

of the total variance of the concatenated control run data, respectively (see Fig. 4 C and 

D). 

 

In view of substantial intermodel differences in the length of the available control runs 

(SI Table 3), we also generated )(t
ALL

C
ρ

 and )(t
ANTHRO

C
ρ

 data sets using equal lengths of 



control run (the first 100 years) from each model, yielding 1,200 years of data for the 

ALL concatenated control runs and 1,000 years for the ANTHRO controls. The EOFs 

estimated from these much shorter data sets are highly similar to those obtained using all 

available control run data. This indicates that in our specific example, the use of 

information from models with longer control runs does not distort the EOF structure. 

 

Although the partitioning of 20CEN results into ALL and ANTHRO model groups is 

logical for the purposes of fingerprint estimation (see main text and SI Table 2), it is less 

meaningful for the control runs because these have no volcanic forcing. Other ways could 

have been devised for separating the control runs into the two data sets required for 

optimal fingerprinting. Here, we use the ALL vs. ANTHRO partitioning of the noise data 

for the sake of consistency with our fingerprint definition approach. 

 

4.4 Method for Estimation of Detection Time. We begin with regridded annual-mean 

observational data, )(tO
ρ

 (from SSM/I), and the concatenated noise data from the ALL 

and ANTHRO model control integrations, )(t
ALL

C
ρ

 and )(t
ANTHRO

C
ρ

. Observed data are 

expressed as anomalies relative to climatological annual means over the entire SSM/I 

period (1988–2006); control run anomalies are defined as described above. 

 

Two forms of detection time are computed: nonoptimized (“raw”) and optimized. We 

consider the raw case first and assume for illustrative purposes that both the fingerprint 

and the noise have been obtained from ALL model output. To define raw detection times, 

)(tO
ρ

 and )(t
ALL

C
ρ

 are projected onto the fingerprint
ALL

F
ρ

, yielding (respectively) a test 

statistic time series Z(t) and a “signal-free” time series N(t). We fit least-squares linear 

trends of increasing length L to Z(t) and then compare these with the standard error of the 

distribution of nonoverlapping L-length trends in N(t). Detection is stipulated to occur 

when the trend in Z(t) exceeds and remains above the 5% significance level. The test is 

one-tailed, and we assume a Gaussian distribution of trends in N(t). 

 



The start date for fitting linear trends to Z(t) is 1988, the first complete year of the SSM/I 

data. We use a minimum trend length of 10 years, so the earliest possible detection time 

is in 1997. To explore the sensitivity of our results to the choice of fingerprint and noise 

data sets, we calculate detection times for all four possible combinations of the 

fingerprints 
ALL

F
ρ

and 
ANTHRO

F
ρ

 and the noise data sets )(t
ALL

C
ρ

 and )(t
ANTHRO

C
ρ

 (see Table 

1). 

 

Optimized detection times are determined similarly but involve projection of )(tO
ρ

 and 

)(t
ALL

C
ρ

 onto *F
ALL

ρ
, a version of the fingerprint that has been rotated away from high noise 

directions (here, and subsequently, the asterisk denotes an optimized version of the 

fingerprint). This rotation is performed in the subspace of the first m EOFs of )(t
ALL

C
ρ

, 

where m is the so-called “truncation dimension.” We examined the sensitivity of 

optimized detection times by using three different choices of m (5, 10, and 15). To avoid 

the introduction of “artificial skill,” the same noise data set is never used for both 

optimizing the fingerprint and estimating the “signal free” time series N(t) (8). This is 

why we require two noise data sets, )(t
ALL

C
ρ

 and )(t
ANTHRO

C
ρ

. Full details of the detection 

method are given elsewhere (8). 

 

Given the short observational record lengths, we use only the spatial properties of signal 

and noise in rotating *F
ALL

ρ
and *F

ANTHRO

ρ
. Other detection work involving longer data sets 

with more temporal structure has used both spatial and temporal information for 

fingerprint optimization (9). 

 

Because residual control run drift was not subtracted in the formation of the )(t
ALL

C
ρ

 and 

)(t
ANTHRO

C
ρ

data sets, there are several large “jumps” in the N(t) time series at the 

transitions between individual control runs (SI Figs. 11 and 12). The most obvious 

example is the jump between the end of the GFDL-CM2.1 control run and the beginning 

of the GISS-EH control (SI Fig. 11). For the purposes of estimating detection time, such 

discontinuities inflate the standard deviation of the sampling distribution of the L-length 



trends that we fit to N(t), and hence make it more difficult to obtain a statistically 

significant trend in the signal time series Z(t). Our significance testing procedure is 

therefore conservative. 

 

4.5 Estimation of Detection Time: An Example. SI Fig. 8 provides a specific example 

of how we estimate detection time. In this example, Z(t) is the time series of coefficients 

for the projection of the SSM/I Wo data onto the raw and optimized ANTHRO 

fingerprints, 
ANTHRO

F
ρ

and *F
ANTHRO

ρ
. N(t) and N*(t) are the projections of )(t

ANTHRO
C
ρ

, the 

concatenated ANTHRO model control run data, onto 
ANTHRO

F
ρ

and *F
ANTHRO

ρ
, respectively. 

 

Trends in Z(t) are displayed as a function of increasing trend length L (SI Fig. 8A). In the 

“raw fingerprint” case, the largest Z(t) trend is for the 11-year period ending in 1998. 

This is probably due to the influence of the large El Niño in 1997/1998 on observed Wo 

data. For L > 12 years, trends in Z(t) increase and then fluctuate around an asymptotic 

value. Trends in the projection of the SSM/I data onto the optimized fingerprint reach a 

similar asymptotic value but show a smoother initial increase, which suggests that 

optimization is successfully rotating the fingerprint away from high ENSO noise 

directions (see SI Fig. 7) and thus damping the influence of ENSO on Z(t) trends. 

 

As the trend interval L increases, there is a reduction in the standard error of the sampling 

distributions of trends in N(t) (SI Fig. 8B). This decrease may be due not only to a 

decrease in noise amplitude with increasing trend length, but also to dissimilarity 

between the fingerprint pattern and the patterns of low-frequency noise in )(t
ANTHRO

C
ρ

. SI 

Fig. 8 A and B clearly illustrate that the increase in the S/N plotted in SI Fig. 8C arises 

primarily from the decrease in the standard error of the noise trends with longer trend 

interval L. In the optimized case, the growth in S/N is also due to an increase in the signal 

with increasing L. 

 



4.6 Analysis with Mean Removed. In the “mean-removed” case, the spatial means of 

)(tO
ρ

, )t(S
ALL

ρ
, )t(S

ANTHRO

ρ
, )(t

ALL
C
ρ

, and )(t
ANTHRO

C
ρ

 were removed (at each gridpoint and 

at each time, t) before calculation of fingerprints, noise EOFs, and detection times. 

 

5. Details of Other Statistical Analyses 

 

5.1 Calculation of Temporal Standard Deviations. All temporal standard deviations 

estimated from the Wo data shown in Fig. 3 were calculated by using linearly detrended 

data. This was done because some of the model simulations examined here (and the 

SSM/I and ERSST data) have large trends in atmospheric moisture or SST, which inflate 

the temporal variance. 

 

5.2 Calculation of Confidence Intervals for Linear Trends. The error bars on the 

SSM/I Wo trend in Fig. 3B are the “adjusted” 2σ confidence intervals for b, the slope 

parameter of the estimated least-squares linear trend in the observed data (10). The 

adjustment for temporal autocorrelation assumes a lag-1 autocorrelation structure of the 

trend residuals, e(t). The lag-1 autocorrelation coefficient of e(t) is used to compute an 

effective sample size, ne, and to adjust sb, the standard error of b. Strong temporal 

autocorrelation of e(t) results in ne << n (the actual number of time samples) and inflates 

sb. For the monthly-mean Wo data analyzed here, ne is typically an order of magnitude 

smaller than n. 

 

5.3 Digital Filtering. For display purposes, the modeled and observed <Wo> data in Fig. 

1 were smoothed using a digital filter (11) with a window width of K = 21 months, 

corresponding to a half-power point of 25 months (see SI Fig. 13). This damps variability 

on interannual and ENSO time scales, while information on the atmospheric moisture 

response to volcanic forcing is largely preserved. The overall linear trend was subtracted 

before filtering and reinserted after filtering. Data loss was avoided by “reflecting” (K – 

1)/2 points at the beginning and end of the time series. The same filter was used in the 

variability calculations shown in Fig. 3B. The <Wo> data from the PCM and 



MIROC3.2(medres) runs in Fig. 5 were digitally filtered with a window width of K = 145 

months, which corresponds to a half-power point of 119 months. 
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